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Estimating the effects of non-pharmaceutical 
interventions on COVID-19 in Europe
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Helen Coupland2, Charles Whittaker2, Harrison Zhu1, Tresnia Berah1, Jeffrey W. Eaton2, 
Mélodie Monod1, Imperial College COVID-19 Response Team*, Azra C. Ghani2,  
Christl A. Donnelly2,3, Steven Riley2, Michaela A. C. Vollmer2, Neil M. Ferguson2, Lucy C. Okell2 
& Samir Bhatt2,7 ✉

Following the detection of the new coronavirus1 severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced 
large epidemics of coronavirus disease 2019 (COVID-19). In response, many European 
countries have implemented non-pharmaceutical interventions, such as the closure 
of schools and national lockdowns. Here we study the effect of major interventions 
across 11 European countries for the period from the start of the COVID-19 epidemics 
in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model 
calculates backwards from observed deaths to estimate transmission that occurred 
several weeks previously, allowing for the time lag between infection and death. We 
use partial pooling of information between countries, with both individual and shared 
effects on the time-varying reproduction number (Rt). Pooling allows for more 
information to be used, helps to overcome idiosyncrasies in the data and enables 
more-timely estimates. Our model relies on fixed estimates of some epidemiological 
parameters (such as the infection fatality rate), does not include importation or 
subnational variation and assumes that changes in Rt are an immediate response to 
interventions rather than gradual changes in behaviour. Amidst the ongoing 
pandemic, we rely on death data that are incomplete, show systematic biases in 
reporting and are subject to future consolidation. We estimate that—for all of the 
countries we consider here—current interventions have been sufficient to drive Rt 
below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. 
We estimate that across all 11 countries combined, between 12 and 15 million 
individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 
3.2% and 4.0% of the population. Our results show that major non-pharmaceutical 
interventions—and lockdowns in particular—have had a large effect on reducing 
transmission. Continued intervention should be considered to keep transmission of 
SARS-CoV-2 under control.

Following the identification of the new coronavirus SARS-CoV-2 in 
Wuhan (China) in December 2019 and its global spread, large epidemics 
of COVID-19 have ensued in Europe. In response to the rising numbers of 
cases and deaths and to preserve health systems, European countries— 
as with those in Asia—have implemented measures to control their 
epidemics. These large-scale non-pharmaceutical interventions vary 
between countries, but include social distancing (such as banning large 
gatherings), border closures, school closures, measures to isolate symp-
tomatic individuals and their contacts, and large-scale lockdowns of 
populations with all but essential internal travel banned. Understanding 
whether these interventions have had the desired effect of controlling 

the epidemic, and which interventions are necessary to maintain con-
trol, is critical given their large economic and social costs. The key aim 
of these interventions is to reduce Rt, a fundamental epidemiological 
quantity that represents the average number of infections generated at 
time t by each infected case over the course of their infection.

In China, strict movement restrictions and other measures (includ-
ing case isolation and quarantine) began to be introduced from 23 
January 2020, which achieved a downward trend in the number of 
confirmed new cases during February and resulted in zero new con-
firmed indigenous cases in Wuhan by 19 March 2020. Studies have 
estimated how the values of Rt changed during this time in different 
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areas of China, from around 2–4 during the uncontrolled epidemic 
to below 1 (refs. 1,2).

Estimating Rt for SARS-CoV-2 presents challenges, owing to the high 
proportion of infections that are not detected by health systems1,3,4 
and to the regular changes in testing policies, which resulted in differ-
ent proportions of infections being detected over time and between 
countries. Initially, most countries had the capacity to test only a small 
proportion of suspected cases and reserved tests for severely ill patients 
or for high-risk groups (for example, the contacts of positively tested 
individuals).

An alternative way to estimate the course of the epidemic is to cal-
culate backwards from observed deaths to the number of infections. 
We introduce a Bayesian mechanistic model linking the infection cycle 
to observed deaths, inferring the total population infected (attack 
rates) as well as Rt. We assess whether there is evidence that interven-
tions have so far been successful at reducing Rt to values below 1. We 
simulate a hypothetical counterfactual scenario in which Rt remains at 
starting levels to estimate the deaths that would have occurred without 
interventions.

Reported deaths are likely to be far more reliable than case data—
although reported death data still have limitations. First, early deaths 
attributable to COVID-19 may have been missed. Second, there is 
variation in the reporting of deaths by country and over time. Third, 
reporting delays are expected and can be both systematic and random 
in nature. We attempt to overcome these data limitations by using a 
consolidated data source, incorporating noise in our observational 
model, partially pooling of information between countries and per-
forming a sensitivity analysis under scenarios of underreporting to 
test our conclusions (Supplementary Information).

Our model relies on fixed estimates of some epidemiological param-
eters, such as the onset-to-death distribution, the infection fatality rate 
and the generation distribution, that are based on previous work5,6; we 
perform a sensitivity analysis on these parameters. Our parametric 
form of Rt assumes that changes in Rt are an immediate response to 
interventions rather than gradual changes in behaviour, and it does 
not include importation or subnational variation. We assume that 
individual interventions have a similar effect in different countries, 
and that the efficacy of these interventions remains constant over 
time. Our framework infers Rt from mortality data, while accounting 
for time lags since infections occurred. As a result, even with perfect 
data and partial pooling, we cannot perfectly predict the current value 
of Rt. However, the credible intervals on Rt show the self-consistent 
behaviour that is a hallmark of a fully Bayesian analysis throughout 
the entire period we study, exhibiting appropriate shrinkage as more 
data become available (Supplementary Videos 1–3).

Italy was the first European countr y to begin major 
non-pharmaceutical interventions, and other countries followed soon 
afterwards (Extended Data Fig. 4). The onset of interventions ranged 
between 2 March and 29 March 2020. We analysed data on mortality 
from COVID-19 in 11 European countries until 4 May 2020, at which 
point lockdowns were relaxed in Italy and Spain. For each country, we 
model the number of infections, the number of deaths and Rt (Fig. 1). 
Rt is modelled as a piecewise constant function that changes only when 
an intervention occurs. Each country has its own individual starting Rt 
before interventions took place. For all countries, interventions are 
assumed to have the same relative effect on Rt and are informed by 
mortality data across all countries. The only exception is that we use 
partial pooling to introduce country-specific effects of the effective-
ness of the last intervention introduced in the study period in a country 
(which is usually lockdown).

Estimated infections, Rt and effect sizes
In all countries, we estimate there are orders-of-magnitude fewer infec-
tions detected (Fig. 1, Extended Data Figs. 1, 2) than true infections, most 

likely owing to mild and asymptomatic infections as well as limited 
testing capacities and changes in testing policy. In Italy, our results 
suggest that—cumulatively—2.8 (2.2–3.5) million people (all parentheti-
cal ranges refer to 95% credible intervals) have been infected as of 4 
May 2020, which gives an attack rate of 4.6% (3.6–5.8%) of the popula-
tion (Table 1). In Spain (which has also experienced a large number of 
deaths), we estimate that 5.5% of the population (2.6 (2.1–3.3) million 
people) have been infected to date. Germany, the most populous coun-
try in our study, is estimated to have one of the lowest attack rates at 
0.85% with 710,000 (550,000–930,000) people infected. Belgium has 
the highest estimated attack rates of 8%, followed by Spain with 5.5%. 
Although there have been few reliable national serological studies7, 
initial small-scale surveys in Austria8 and Denmark9 closely align with 
our estimates. A much larger study in Spain is very closely aligned with 
our estimates10. To some extent, these initial results validate our choice 
of infection fatality rate.

Averaged across all countries, we estimate the initial Rt to be 3.8 (2.4–
5.6), consistent with previous analyses1,11. These estimates are informed 
by our choice of generation-interval distribution and the initial growth 
rate of observed deaths. A shorter assumed generation time results in 
lower starting Rt (Supplementary Discussion 3). The initial values of Rt are 
also uncertain, owing to (a) importation (rather than local transmission) 
being the dominant source of new infections in the early period of the 
epidemic and (b) possible under-ascertainment in deaths, particularly 
before testing became widespread. We perform sensitivity analyses 
around these parameters (Supplementary Discussions 10, 11).

We estimate large reductions in Rt in response to the combined 
non-pharmaceutical interventions. Our results—which are driven 
more by countries with advanced epidemics and larger numbers of 
deaths—suggest that these interventions have together had a substan-
tial effect on transmission, as measured by changes in the estimated 
Rt. At the time of this study, we find current estimates of Rt to range 
from a posterior mean of 0.44 (0.26–0.61) for Norway to a posterior 
mean of 0.82 (0.73–0.93) for Belgium, with an average of 0.66 across 
the 11 countries—an 82% reduction compared to the pre-intervention 
values. For all countries, we find that current interventions have been 
sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99% 
across all countries we consider) and achieve control of the epidemic. 
These conclusions are corroborated by studies from individual coun-
tries—France12, Spain13, Germany14 and the UK15—over a similar period, 
which arrive at very similar estimates despite different methodologies 
and data. For example, a previous study12 estimates an Rt of 0.67 for 
France using hospitalization records (we estimate 0.68); for Germany, 
the Robert Koch Institute reports Rt of 0.76 using electronically noti-
fied cases14 (we estimate 0.71). The retrospective stability of our model 
(Supplementary Videos 1–3) is variable when the implementations of 
interventions are very dissimilar; an example of this is seen in Sweden, 
where interventions were dissimilar to other countries and led initially 
to large uncertainty. Our model uncertainty is also dependent on the 
magnitude of Rt; this occurs because infections are a nonlinear function 
of Rt and are sensitive to small increases. Uncertainty shrinks greatly 
when Rt is reduced. Examples of this effect are seen in all countries, but 
it is most pronounced in Belgium and France; these countries show 
large uncertainties in the number of infections in the early period of 
the epidemic. Our choice of parameterizing Rt using piecewise constant 
functions means that we cannot capture the fine-scale variation that 
could be achieved by using additional covariates.

Lockdown has an identifiable large effect on transmission (81% 
(75–87%) reduction) (Fig. 2). The close spacing of interventions in 
time (Extended Data Fig. 4) means that the individual effects of the 
other interventions are not identifiable (Fig. 2). Our partial pooling 
model requires only one country to provide a signal for the effect of 
a given intervention, and this effect is then shared across all coun-
tries. Although this sharing can potentially lead to initial over- or 
under-estimation of the effect of an intervention, it also means that a 
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Fig. 1 | Country-level estimates of infections, deaths and Rt for France, Italy, 
Spain and the UK. Left, daily number of infections. Brown bars are reported 
infections; blue bands are predicted infections; dark blue, 50% credible 
interval; light blue 95% credible interval. The number of daily infections 
estimated by our model drops immediately after an intervention, as we assume 
that all infected people become immediately less infectious through the 

intervention. Afterwards, if Rt is above 1, the number of infections will start 
growing again. Middle, daily number of deaths. Brown bars are reported 
deaths; blue bands are predicted deaths; credible intervals are as in the left 
plot. Right, Rt. Dark green, 50% credible interval; light green, 95% credible 
interval. Icons are interventions, shown at the time at which they occurred.
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consistent signal for all countries can be estimated before that signal 
is present in data from an individual country16. Therefore, this sharing 
is potentially useful for generating early warnings, by leveraging what 
happened in countries with earlier epidemics to inform countries with 
more-recent epidemics.

Estimated effect of interventions on deaths
Extended Data Table 1 shows total deaths forecast from the beginning 
of the epidemic up to and including 4 May 2020 under our fitted model 
and under the counterfactual model, which predicts what would have 
happened if no interventions were implemented (and Rt = R0; that is, 
the initial Rt estimated before interventions came into effect).

By comparing the deaths predicted under the model with no inter-
ventions to the deaths predicted in our intervention model, we calcu-
lated the total deaths averted in our study period. We find that across 
11 countries 3.1 (2.8–3.5) million deaths have been averted owing to 
interventions since the beginning of the epidemic; Extended Data Fig. 5 
compares the actual total deaths to the counterfactual total deaths. The 
counterfactual model without interventions is illustrative only, and 
reflects the assumptions of our model. We do not account for changes 
in behaviour; in reality, even in the absence of government interven-
tions we would expect Rt to decrease and therefore would overestimate 
deaths in the no-intervention model. Conversely, we do not consider the 
effect on the infection fatality rate as a result of an overwhelmed health 
system in which patients may not be able to access critical care facilities, 
which would underestimate the number of counterfactual deaths. In 
the Supplementary Information, we show further counterfactual esti-
mates under differing assumptions of the generation distribution and 
onset-to-death distribution and all scenarios broadly show the same 
trends. Given this agreement across differing scenarios, we believe 
our estimates for the counterfactual deaths averted to be plausible.

Discussion
During the ongoing transmission of SARS-CoV-2 in Europe, we analyse 
trends in the numbers of deaths to assess the extent to which transmission 
has been reduced. Representing the infection process associated with 
COVID-19 using a semi-mechanistic, joint Bayesian hierarchical model, we 
can reproduce trends observed in the data relating to deaths and produce 
empirically driven predictions that are valid over short time horizons.

We estimate that there have been many more infections than are 
currently reported. The high level of under-ascertainment of infections 

that we estimate here is probably due to the focus on testing in hospital 
settings, which misses milder or asymptomatic cases in the commu-
nity. Despite this, we estimate that only a relatively small minority of 
individuals in each country have been infected (Table 1). Our estimates 
imply that the populations in Europe are not close to herd immunity 
(about 70% if R0 is 3.8)17. Furthermore, with values of Rt below 1 in all 
countries, the rate of acquisition of herd immunity will slow down rap-
idly. Our estimates for attack rates during our study period are consist-
ent with those reported from national serological studies7. Similarly, 
comparable studies estimating Rt all agree that the number as of 4 May 
2020 is less than 1.

To our knowledge, our modelling approach is unique in pooling infor-
mation from multiple countries at once. Using this approach means 
that we require a central consolidated data source (such as data from 
the European Centre of Disease Control (ECDC)), and also that trends 
in some countries will be affected by those countries with more data. 
We argue that this effect is beneficial, in that it helps to minimize idi-
osyncrasies in the data16, as well as to improve consistency of estimates 
over time. Although our qualitative conclusions surrounding the effect 
of interventions and the finding that Rt is less than 1 are robust to our 
choice of whether to incorporate pooling or not, the ability to use a 
greater extent of available data and share information across countries 
in a statistically principled manner markedly improves the consist-
ency of model predictions across the study period (Supplementary 
Videos 1–3).

Most interventions were implemented in rapid succession in many 
countries, and as such it is difficult to disentangle the individual 
effect sizes of each intervention. In our analysis, we find that only the 
effect of lockdown is identifiable, and that it has a substantial effect 
(81% (75–87%) reduction in Rt). Taking into account country-specific 
effects, the effect size of lockdown remains large across all countries  
(Supplementary Fig. 29).

We acknowledge the limitations of existing mortality data relat-
ing to COVID-19—in particular, deaths outside hospitals may be 
underreported. However, by using the ECDC data, we rely on a 
comprehensive data source that is refined and updated each day 
in a systematic process. Our sensitivity analysis of underreporting 
and statistical-measurement noise suggests that we may slightly 

Table 1 | Total population infected by country

Country Percentage of total population infected (mean (95% credible  
interval))

Austria 0.76% (0.59–0.98%)

Belgium 8% (6.1–11%)

Denmark 1.0% (0.81–1.4%)

France 3.4% (2.7–4.3%)

Germany 0.85% (0.66–1.1%)

Italy 4.6% (3.6–5.8%)

Norway 0.46% (0.34–0.61%)

Spain 5.5% (4.4–7.0%)

Sweden 3.7% (2.8–5.1%)

Switzerland 1.9% (1.5–2.4%)

UK 5.1% (4.0–6.5%)

Posterior model estimates of the attack rate by country (percentage of total population 
infected) as of 4 May 2020. Results are derived from a model representing 11 countries with 
a total population of 375 million and 128,928 reported COVID-19-related deaths up to 4 May 
2020.
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Fig. 2 | Effectiveness of interventions on Rt. Our model includes five 
covariates for governmental interventions, adjusting for whether the 
intervention was the first one undertaken by the government in response to 
COVID-19 (red) or was subsequent to other interventions (green). Mean relative 
percentage reduction in Rt is shown with 95% posterior credible intervals. If 
100% reduction is achieved, Rt = 0 and there is no more transmission of 
COVID-19. Lockdown is significantly different from the other interventions; the 
other interventions are not significantly different from each other, probably 
owing to the fact that many interventions occurred on the same day or within 
days of each other (as shown in Extended Data Fig. 4). Results are derived from a 
model that represents 11 countries with a total population of 375 million and 
128,928 reported COVID-19-related deaths up to 4 May 2020.
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underestimate the attack rates in some countries, but this does not 
change our overall conclusions pertaining to Rt. However, even if 
the data were complete, our method cannot surmount the time lag 
between infections and deaths and can only fully identify trends in 
infections 2–3 weeks earlier. Extensions of our model could use case, 
hospitalization or intensive care data, but reconciling the different 
biases inherent in these sources while ensuring parsimony is chal-
lenging and would require additional assumptions.

The modern understanding of infectious disease, combined with 
a global publicized response, has meant that nationwide interven-
tions could be implemented with widespread adherence and support. 
Given the observed infection fatality ratios and the epidemiology of 
COVID-19, major non-pharmaceutical interventions have had an effect 
in reducing transmission in all of the countries we have considered. 
In all countries in this study, we find that these interventions have 
reduced Rt below 1, and have contained their epidemics at the cur-
rent time. When looking at simplistic counterfactual models over the 
whole epidemic, the number of potential deaths averted is substantial. 
We cannot say for certain that the current measures will continue to 
control the epidemic in Europe; however, if current trends continue 
there is reason for optimism.
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Methods

Data
Our model uses daily consolidated death data from the ECDC for 
11 European countries currently experiencing the COVID-19 epidemic: 
Austria, Belgium, Denmark, France, Germany, Italy, Norway, Spain, 
Sweden, Switzerland and the UK. The ECDC provides information on 
confirmed cases and deaths attributable to COVID-19. For population 
counts, we use the United Nations Population Division age-stratified 
counts18.

We also catalogue data on the nature and type of major 
non-pharmaceutical interventions. We looked at the government web-
pages from each country as well as their official public health webpages 
to identify the latest advice or laws being issued by the government and 
public health authorities. We collected the following: school closure 
ordered; case-based measures; public events banned; social distanc-
ing encouraged; lockdown decreed; and the time of the first and last 
intervention. A full list of the timing of these interventions and the 
sources we have used is provided in the Supplementary Notes, Sup-
plementary Table 2.

By using the ECDC data, we rely on a consolidated data source 
compiled by the ECDC, who include many sources of data each day, 
constantly refining and updating data using a comprehensive and 
systematic process. However, despite the rigorous protocols, countries 
may vary in the specifics of the data that they report to the ECDC. For 
example, there is variation in reporting (that is, community versus hos-
pital) and time lags. Despite these issues, we use ECDC data to ensure 
as much consistency as possible across all countries.

Model
A visual summary of our model is presented in Extended Data Fig. 3; 
details are provided in the Supplementary Methods.

We fit our model to observed deaths according to ECDC data from 
11 European countries. The modelled deaths are informed by an 
infection-to-death distribution (Supplementary Fig. 1; derived from 
assumptions about the time from infection to the onset of symptoms 
and about the time from the onset of symptoms to death), and the 
population-averaged infection fatality ratio (adjusted for the age struc-
ture and contact patterns of each country, as discussed in the Supple-
mentary Methods, Supplementary Table 3).

Given these distributions and ratios, modelled deaths are a function 
of the number of infections. The number of infections is modelled as 
the product of Rt with a discrete convolution of the previous infections. 
Individual components of this convolution sum are weighted by the 
generation time distribution (the average time from the infection of 
one person to the time at which they infect another; Supplementary 
Fig. 2). In our work, we approximate the generation time distribution 
using the serial interval distribution. Rt is a function of the initial Rt 
before interventions and the effect sizes from interventions, in which 
interventions are modelled as piecewise constant functions.

Following the Bayesian hierarchy from bottom to top gives us a full 
framework to see how interventions affect infections, which can result 
in deaths. A schematic of our model is shown in Extended Data Fig. 3. To 
maximize the ability to observe the effect of interventions on deaths, 
we fit our model jointly for all 11 European countries, and use partial 
pooling of information between countries with both individual and 
shared effects on Rt. Partial pooling operates on the last intervention, 
which is—in most cases—lockdown. The effect of partial pooling can 
be seen in Supplementary Discussion 12, Supplementary Fig. 29. We 
chose a balanced prior that encodes the prior belief that interventions 
have an equal chance of having an effect or not, and ensure a uniform 
prior on the joint effect of all interventions (Supplementary Fig. 3). 
We evaluate the effect of our Bayesian prior distribution choices and 
evaluate our Bayesian posterior calibration to ensure our results are 
statistically robust.

We perform extensive model validation and sensitivity analyses. We 
validate our model by cross-validation over a 14-day period (Supple-
mentary Discussion 1, Supplementary Table 1) and we show the fits for 
holdout samples in Supplementary Figs. 5–15. We check the convergence 
of the Markov chain Monte Carlo sampler (Supplementary Fig. 4). We 
consider the sensitivity of our estimates of Rt to the mean of the genera-
tion distribution (Supplementary Discussion 3, Supplementary Figs. 16, 
17). We further show that the choice of generation distribution does not 
change our counterfactual conclusions (Supplementary Fig. 18). Using 
univariate analyses and uninformative priors, we find (Supplementary 
Fig. 19) that all effects on their own serve to decrease Rt (Supplementary 
Discussion 4). We compare our model to a non-parametric Gaussian 
Process model (Supplementary Discussion 5). To assess the effect of 
individual countries on the results, we perform a ‘leave one country 
out’ sensitivity analysis (Supplementary Discussion 6, Supplementary 
Figs. 20, 21). To validate our starting values of Rt, we compare our model 
against an exponential-growth linear model (Supplementary Discus-
sion 7, Supplementary Fig. 22). Instead of a joint analysis, we consider 
fits of our model to individual countries (Supplementary Discussion 8, 
Supplementary Figs. 23–26). We perform a sensitivity analysis with 
respect to the onset-to-death distribution (Supplementary Discussion 9, 
Supplementary Fig. 27). We validate our probabilistic seeding scheme 
through an importance-sampling leave-one-out cross-validation (Sup-
plementary Discussion 10). We consider a model extension with a con-
stant, probabilistic under-reporting (Supplementary Discussion 11), 
finding that Rt does not change substantially (Supplementary Fig. 28).

Our model is different to other approaches (such as EpiEstim19) that 
use the discrete renewal equation. We use the renewal equation as a 
latent process to model infections and propose a generative mecha-
nism to connect these infections to death data. Simply applying the 
renewal equation directly to death data requires positing a mechanism 
in which deaths in the past can cause future deaths (see, for example, 
ref. 20). In addition, for Rt, we are able to use a functional relationship in 
which non-pharmaceutical interventions can have a direct effect on Rt.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Death counts for the 11 European countries for the time period in our 
study and the full set of posterior draws from our model are available 
at https://reshare.ukdataservice.ac.uk/854380/.

Code availability
All source code and data necessary for the replication of our results 
and figures are available at https://github.com/ImperialCollegeLon-
don/covid19model. An R package based on our method is available at 
https://imperialcollegelondon.github.io/epidemia/.
 

18. United Nations, Department of Economic and Social Affairs, Population Division. World 
Population Prospects 2019: Data Booklet, ST/ESA/SER.A/424. (United Nations, 2019).

19. Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A new framework and software to 
estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178, 
1505–1512 (2013).

20. Goldstein, E. et al. Reconstructing influenza incidence by deconvolution of daily 
mortality time series. Proc. Natl Acad. Sci. USA 106, 21825–21829 (2009).
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Extended Data Fig. 1 | Country-level estimates of infections, deaths and  
Rt for Belgium, Germany, Sweden and Switzerland. Left, daily number of 
infections. Brown bars are reported infections; blue bands are predicted 
infections; dark blue, 50% credible interval; light blue, 95% credible interval. 
The number of daily infections estimated by our model drops immediately 
after an intervention, as we assume that all infected people become 

immediately less infectious through the intervention. Afterwards, if Rt is above 
1, the number of infections will starts growing again. Middle, daily number of 
deaths. Brown bars are reported deaths; blue bands are predicted deaths; 
credible intervals are as in the left plot. Right, Rt. Dark green, 50% credible 
interval; light green, 95% credible interval. Icons are interventions, shown at 
the time at which they occurred.



Extended Data Fig. 2 | Country-level estimates of infections, deaths and  
Rt for Austria, Norway and Denmark. Left, daily number of infections. Brown 
bars are reported infections; blue bands are predicted infections; dark blue, 
50% credible interval; light blue, 95% credible interval. The number of daily 
infections estimated by our model drops immediately after an intervention, as 
we assume that all infected people become immediately less infectious 

through the intervention. Afterwards, if Rt is above 1, the number of infections 
will starts growing again. Middle, daily number of deaths. Brown bars are 
reported deaths; blue bands are predicted deaths; credible intervals are as in 
the left plot. Right, Rt. Dark green, 50% CI; light green, 95% CI. Icons are 
interventions, shown at the time at which they occurred.
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Extended Data Table 1 | Total forecasted deaths since the beginning of the epidemic up to 4 May 2020 in our model and in a 
counterfactual model that assumes no interventions had taken place

Estimated averted deaths over this time period as a result of the interventions. Numbers in brackets are 95% credible intervals.
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